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ABSTRACT

The challenges of exploring the latent spaces of deep-
learning audio models often lead artists to rely on chance,
randomness, and combinatorial approaches, making it dif-
ficult to steer these models toward musically meaningful
outcomes. In this paper, we explore how Principal Com-
ponent Analysis (PCA) applied to pre-encoded RAVE (Re-
altime Audio Variational Autoencoder) latent representa-
tions can provide a more controlled and curated approach
to navigating these high-dimensional spaces. By restrict-
ing exploration to selected regions of the latent space, mu-
sicians gain clearer pathways to achieving specific sonic
goals. Although t-SNE and UMAP effectively preserve in-
tricate local structures, we show how the linearity, com-
putational efficiency, and interpretability of PCA offer dis-
tinct advantages for real-time applications. In addition, we
introduce a graphical user interface (GUI) and a sensor sys-
tem for manipulating ’timbral vectors’ derived from PCA
components, providing an intuitive tool for identifying, re-
fining, and shaping sonic transformations. To evaluate the
effectiveness of PCA, we systematically compare its per-
formance with t-SNE and UMAP, highlighting the trade-
offs among these methods.

1. INTRODUCTION

Neural synthesis methods have significantly advanced to-
ward real-time generative audio capabilities and are in-
creasingly being adopted by artists for creative applica-
tions [1–4]. Early approaches utilized deep autoregres-
sive models such as WaveNet [5], SampleRNN [6], and
WaveRNN [7], as well as Fourier-based models such as
Tacotron [8] and GANSynth [9].

Modern approaches based on Variational Autoencoders
(VAEs) have gained popularity because they allow for
fast, high-quality audio synthesis, and direct control over
generation by exposing latent variables. VAEs require a
time-intensive training phase using large datasets of au-
dio. However, once trained, models like RAVE [10] enable
real-time high-quality sound synthesis at relatively low la-
tency. Recent projects developed with RAVE include La-
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To comprehend the methods of sound generation within
these artistic practices, it is necessary to first examine
a few key technical concepts. The training model pro-
cess produces high-dimensional latent spaces. They are a
multidimensional compressed representation of data points
informing about the model structure, and the dataset’s
learned audio features. Latent spaces only preserve essen-
tial features that will inform input data structures to gen-
erate the output space, in our case sonic results. Each di-
mension of a latent space corresponds to a latent variable
learned from the original data. Latent variables are un-
derlying characteristics that inform the way data are dis-
tributed, but they are usually entangled, not observable,
and difficult to navigate in a linear way.

In audio synthesis projects using RAVE, artists can di-
rectly access the signals that feed the encoder and the de-
coder of the system (Figure 1 top schematic). In this aes-
thetic exploration of the variables of the latent space, we
have identified a number of methods that are usually ap-
plied in this representational realm:

• Seed Interpolation: two or more latent vectors
are selected, and intermediate states are generated,
through linear or spherical interpolation. This ap-
proach typically results in smooth transitions be-
tween timbres or musical motifs. However, while
visually appealing in dimensionality-reduced pro-
jections, these interpolations can be unpredictable,
especially when the latent space is not well under-
stood.

• Unconditional Exploration: this method refers to
randomly sampling the latent space, a method fre-
quently used in generative adversarial networks
(GANs) and variational autoencoders (VAEs) for
sonic discovery. Artists often embrace chance-based
approaches to produce new or unexpected sounds.
While this method can yield serendipitous results, it
provides little control over musical direction or tim-
bre consistency, making it difficult to achieve artisti-
cally coherent material.

• Timbre Transfer: the goal of this method is to apply
1 https://github.com/jasper-zheng/nn_terrain
2 https://nicolaprivato.com/mouja
3 https://semilla.ai/
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the spectral qualities of one sound onto another. It
has gained popularity for cross-domain transforma-
tions, such as making a voice sound like a violin or
transforming an environmental recording into a syn-
thetic pad. Models like RAVE allow for low-latency
transformations with high fidelity. However, align-
ing timbre nuances from different domains is not al-
ways intuitive and can involve large latent jumps that
are difficult to navigate without a structured frame-
work like dimensionality reduction.

Despite the creative potential of these approaches, they
are largely based on trial and error. The key challenge is
how to effectively explore the black-box nature of learned
latent variables. Due to the high dimensionality of la-
tent representations, direct parameter manipulation often
results in unpredictable or unintended sounds. In models
like RAVE, where latent spaces typically range from 4 to
32 dimensions, navigating them can feel like a process of
random exploration and chance.

The training process yields high-dimensional latent
spaces—compressed representations whose coordinates
describe the audio features the model has learned. In
RAVE, the first few latent dimensions (often < 4) already
show partial disentanglement: they correlate consistently
with broad timbral cues such as spectral centroid, over-
all loudness, or spectral spread. However, as dimension-
ality increases, the correspondence between any single co-
ordinate and a perceptual factor rapidly degrades; later di-
mensions tend to encode mixtures of several lower-level
attributes and become harder to interpret directly. This un-
even interpretability motivates post-hoc structuring strate-
gies, such as the PCA approach proposed here.

One way to address this complexity is by predefining
control values to explicitly condition the generation pro-
cess [11, 12]. Their strategy is to model the distribution
of high-dimensional output space as a generative model
conditioned on the input observation. Another approach,
proposed by Vigliensoni and Fiebrink [13], applies Inter-
active Machine Learning through regression techniques.
In this method, users iteratively provide training sets that
pair locations in the human-performance space with cor-
responding locations in the model’s latent space. Then, a
regression algorithm learns to map between the two, en-
abling users to explore intermediate points. However, this
approach requires a large number of training pairs. With-
out sufficient data, the model generates mappings that fail
to accurately reflect the intended relationships.

This paper proposes an alternative approach: leveraging
Principal Component Analysis (PCA) on RAVE encoded
audio data to make latent spaces more interpretable and
musically guided. By applying PCA, pre-encoded data
points are automatically clustered based on their key char-
acteristics, forming data clouds directly connected to the
sonic properties of the encoding audio materials. By struc-
turing access to the latent space in this way, we aim to
bridge the gap between exploratory navigation and pur-
poseful control, offering artists a clearer and more intuitive
way to shape sound.

Figure 1. PCA Analysis of RAVE Latent Space (top) and
schematic of PCA Dimensionality Reduction (bottom)

2. A PCA-BASED APPROACH TO EXPLORE
ENCODED REPRESENTATIONS

2.1 Theoretical Foundations and Benefits of PCA in
RAVE Models

Principal Component Analysis (PCA) provides a comple-
mentary lens through which to view RAVE’s latent repre-
sentations. While the variational autoencoder (VAE) al-
ready compresses the audio into 4–32 coordinates and par-
tially separates dominant factors in the earliest axes, the
later coordinates remain decidedly entangled and opaque
to the user. PCA therefore does not seek to create dis-
entanglement from scratch; instead, it re-orders, re-scales,
and groups the existing latent directions so that the most
perceptually coherent variations—whether they originate
in dimension 0 or dimension 13—are surfaced first, giving
musicians a clear set of “timbral sliders” to manipulate.

At its core, PCA involves the eigendecomposition of the
data covariance matrix, yielding eigenvectors that define
orthogonal directions of maximum variance. When ap-
plied to RAVE encodings, these eigenvectors can be con-
ceptualized as "timbral vectors" capturing significant sonic
variations across the dataset, with corresponding eigenval-
ues quantifying the variance explained by each principal
component [14].

Several distinct advantages make PCA particularly well-
suited for audio latent space exploration. Its linearity and
interpretable nature ensure that movements in a particu-
lar direction yields predictable sonic transformations, help-
ing artists build intuitive control over parameter adjust-
ments [15]. PCA’s computational efficiency makes it ideal
for real-time applications, as the core transformation ma-
trix can be pre-computed offline and applied rapidly during
performance, even on resource-constrained systems like
single-board computers used in RAVE deployment [14].

The parameter stability of PCA contrasts sharply with
methods like t-SNE and UMAP, which depend on stochas-
tic processes and complex hyperparameter tuning. PCA



yields deterministic results based solely on the input data,
providing consistency, an essential element for musical
performance and composition. Furthermore, PCA ranks
dimensions by their variance contribution, allowing users
to focus first on the most significant latent dimensions, pro-
viding a structured approach to exploring broad timbral
shifts before addressing more subtle variations.

2.2 Methodological Implementation for Audio
Analysis

2.2.1 Data Preparation and Encoding with RAVE

Our implementation of a PCA-based method for RAVE
latent space exploration must effectively bridge compu-
tational analysis with artistic objectives. The process be-
gins with assembling a curated audio corpus which en-
compasses the desired sonic palette, ensuring careful con-
sideration of audio quality, diversity, and representative-
ness. Audio samples are then encoded using the pre-
trained RAVE encoder to produce a dataset of latent vec-
tors. During encoding, audio files are converted into fixed-
length frames, typically with the RAVE compression ratio
being 2048 audio samples per one latent embedding of n-
dimensional values (2048:1). The size of the VAE latent
space dimension can vary depending on the model’s train-
ing hyperparameters.

2.2.2 Feature Extraction and Analysis

Once the audio dataset is encoded into its latent representa-
tion, PCA decomposition reveals several types of informa-
tion that guide artistic exploration. The eigenvalue spec-
trum indicates how variance is distributed across dimen-
sions, offering an insight into the intrinsic dimensionality
of the sonic material.

In well-trained RAVE models, the first three to five
principal components (PCs) typically capture 70–85%
of the corpus variance [14], and these high-energy PCs
align neatly with salient perceptual descriptors. For in-
stance, PC 1 often tracks spectral centroid, PC 2 fol-
lows amplitude-envelope shape, and PC 3 reflects har-
monic richness [15]. Beyond this point, the variance ex-
plained by each additional PC drops sharply, and the cor-
responding directions increasingly blend several low-level
features at once—mirroring the growing entanglement al-
ready present in the later raw RAVE coordinates. The PCA
spectrum thus offers a quantitative map of where the model
is already partially disentangled and where user guidance
is still required.

2.2.3 Real-time Implementation Considerations

Implementing PCA-based navigation for real-time perfor-
mance introduces several technical considerations. Linear
interpolation in PCA space generally produces more pre-
dictable sonic results compared to direct interpolation in
the original latent space, though non-linear interpolation
curves may be used for expressive control.

Typically, the most significant principal components are
assigned to primary controllers (e.g., accelerometer, x/y
pads), while less significant components are mapped to

secondary controllers or automated via envelopes [14].
Establishing soft or hard boundaries within the PCA
space helps prevent excursions into unstable or undesirable
sound regions, particularly in areas where the RAVE model
may exhibit latent instabilities [15]. Although PCA is not a
clustering algorithm, projecting the data onto the principal
components often reveals natural groupings correspond-
ing to playing techniques, articulation types, or instrument
families, clarifying the topology of the latent space [16].

Additionally, tracking the temporal evolution of sounds in
the PCA-reduced space can uncover characteristic trajecto-
ries—such as those representing the attack-sustain-release
envelope—which can be reproduced, modified, or com-
bined to generate new, predictably controlled gestures.

2.3 Comparison with Other Dimensionality
Reduction Techniques

2.3.1 t-SNE (t-Distributed Stochastic Neighbor
Embedding)

Systematic comparisons between PCA and prominent non-
linear dimensionality reduction methods reveal important
distinctions for audio applications. t-SNE (t-Distributed
Stochastic Neighbor Embedding) is widely adopted for
visualization due to its capacity to preserve local struc-
ture, making it effective at revealing cluster relationships
in high-dimensional data [17]. Its strengths lie in preserv-
ing local neighborhoods exceptionally well, revealing sub-
tle timbre relationships that might be lost in linear pro-
jections. The intuitive visual groupings of perceptually
similar sounds are advantageous for exploratory analy-
sis. However, t-SNE’s computational expense (with O(n2)
complexity) and its non-linear, stochastic nature make it
challenging for real-time musical control. Its dependence
on the perplexity parameter and tendency to distort global
relationships limit its utility for predictable transitions be-
tween sonic states.

2.3.2 UMAP (Uniform Manifold Approximation and
Projection)

UMAP (Uniform Manifold Approximation and Projec-
tion) offers a more recent alternative that preserves both lo-
cal and global structures while being computationally more
efficient than t-SNE [18]. UMAP demonstrates superior
preservation of both local and some global structures com-
pared to t-SNE and produces clearer separations between
different playing techniques and articulations. Nonethe-
less, UMAP’s inherent non-linearities complicate intuitive
navigation. Parameters like n-neighbors require careful
tuning, and different initialization seeds can lead to incon-
sistent embeddings, making it less reliable for real-time
performance systems.

2.3.3 PCA Revisited: Linearity as an Advantage

Evaluations consistently demonstrate that while non-linear
methods may produce sonically impressive results that
highlight complex relationships, PCA offers more reliable
and intuitive control for real-time musical applications.



3. IMPLEMENTATION

The implementation code and examples of use can be ac-
cessed from https://github.com/tamlablinz/
RAVE_PCA

3.1 Dataset Composition and Experimental
Framework

Our research leverages pre-trained open RAVE mod-
els from ACIDS-IRCAM 4 : ’wheel.ts’ and ’darbouka.ts’,
trained on human speech and percussion audio datasets,
respectively.

For comparative analysis, we encoded a 10-minute au-
dio comprising two contrasting sonic categories: harsh
noise improvisation (complex spectral content, minimal
harmonic structure) and melodic Ondes Martenot com-
positions (clear harmonic content, sustained tones). This
juxtaposition tests whether PCA can effectively separate
and organize distinct timbral categories within a shared
latent space. The resulting latent vectors (dimension=4)
served as input for comparing dimensionality reduction
techniques, enabling evaluation of how effectively each
method could visualize latent organization and provide
intuitive pathways for creative exploration. Figures 2-4
present a comparative visualization of PCA, t-SNE, and
UMAP analyses using the ’wheel.ts’ model, while Fig-
ures 5-7 show the same three techniques applied to the
’darbouka.ts’ model. Figure 8 provides an additional
PCA analysis of the ’darbouka.ts’ model using a different
dataset focused on percussion recordings, demonstrating
the technique’s consistency across varied audio sources.

Figure 2. PCA Analysis with model ’wheel.ts’

4 https://acids-ircam.github.io/rave_models_
download accessed 3.3.25

Figure 6. t-SNE Analysis with model ’darbouka.ts’

Figure 3. t-SNE Analysis with model ’wheel.ts’

Figure 4. UMAP Analysis with the model ’wheel.ts’

Figure 5. PCA Analysis with model ’darbouka.ts’
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Figure 7. UMAP Analysis with the model ’darbouka.ts’

Figure 8. PCA Analysis with the model ’darbouka.ts’ of a
different dataset (recording of percussion)

Figure 9. GUI with trajectory editor and player

3.2 Software Architecture and GUI Development

We developed a comprehensive framework integrating
real-time audio synthesis with interactive visualization us-
ing a modular architecture: an Analysis Module (Python
with scikit-learn), a Synthesis Engine (Pure Data, Py-
Torch with CUDA optimizations), and an Interactive In-
terface (Python with Dash/Plotly). This design efficiently
bridges computational techniques with creative applica-
tions while maintaining sub-10ms response times even on
modest hardware, ensuring suitability for live performance
and sound design.

The graphical interface (figure 9) emphasizes intuitive in-
teraction through key elements: an interactive projection
visualization displaying latent vectors on principal com-
ponents with immediate audio feedback, trajectory design

tools for creating and manipulating paths through the latent
space, and flexible export capabilities for audio, control
data, and visualization. Users can capture real-time move-
ments, edit waypoints, control interpolation speed, and de-
velop complex sonic patterns, effectively leveraging the or-
ganizational power of PCA within a creative workflow.

To operationalize these insights, a purpose-built graphical
user interface leverages PCA-reduced representations for
intuitive exploration of RAVE latent spaces. A central 2D
or 3D display projects the encoded audio corpus onto the
principal components, providing visual orientation within
the sonic landscape. Users can define key points in the
latent space by selecting exemplary sounds or manually
setting coordinates, enabling smooth navigation between
these points with adjustable interpolation curves [19].

The interface includes a path recorder system to cap-
ture routes through the latent space—via real-time con-
troller input or algorithmic generation—allowing users
to capture, loop, and combine trajectories for complex
timbral gestures. A flexible parameter mapping matrix
permits the assignment of principal components to vari-
ous control inputs (MIDI controllers, OSC messages, in-
ternal LFOs/envelopes) with adjustable scaling and re-
sponse curves. Real-time visual feedback displays spec-
tral changes resulting from latent space navigation, help-
ing users intuitively correlate visual positions with sonic
outcomes [20].

This interface design prioritizes musical usability over
technical complexity, providing artists with clear, pre-
dictable control over the sonic possibilities offered by the
RAVE model.

3.3 Hardware

For musical experimentation with the system, we designed
and built two digital musical instruments (see Figure 10)
based on single-board computers that autonomously run
the visualization system, audio synthesis engine, and user
interface. At the core of our instruments is a Raspberry Pi
5 with 8GB RAM and active cooling. We connected it to a
4-inch round LCD display, which also functions as a mul-
titouch interface for exploring the graphical visualization.
On the display, users can select data points as well as pan,
tilt, and zoom in or out of the graphical visualization.

To enable gestural interaction, we integrated a MPU6050
accelerometer and gyroscope, along with custom-made
switches directly wired to the Raspberry Pi’s GPIO. A sim-
ple Python script reads the General Purpose Input/Output
(GPIO) inputs and transmits this data via the Open Sound
Control (OSC) protocol to a sound engine programmed in
Pure Data (Pd). This hardware setup allows users to se-
lect data points and timbral trajectories via the multitouch
display while controlling sound expressively through the
inclination of the instrument.

For sound generation, we utilized RAVE’s compiled nn-
tilde object for Pure Data on the Raspberry Pi, enabling
real-time performance with custom-trained RAVE models.
These models were trained on GPU-equipped computers
using a configuration optimized for smaller model sizes.
In practice, we did not perceive any noticeable increase in



latency when synthesizing sound on the Raspberry Pi com-
pared to using nn-tilde on our laptops. The gestural sensor
data was mapped to trigger sound envelopes, creating the
sensation of playing discrete notes. Additionally, inclina-
tion along the two horizontal axes controlled the central
frequency of a band-pass filter and the instrument’s overall
volume.

The single-board computers and sensor systems were
housed in custom 3D-printed enclosures (figure 11). On
one hand, we explored the possibility of generating phys-
ical objects derived from the PCA-generated clusters of
data points. Given the complexity of these data clouds, we
had to simplify them to create a printable structure. On the
other hand, we also designed a more neutral enclosure op-
timized for gestural interaction with the instrument. In the
interaction section, we discuss both approaches in detail.

Figure 10. Instrument on a PCA-based 3D-printed rep-
resentation (RaspberryPi 5, Waveshare multitouch LCD
screen and MPU6050 sensor)

4. RESULTS

4.1 Comparative Analysis of Dimensionality
Reduction Approaches

We systematically compared PCA, t-SNE, and UMAP
using consistent hyperparameter optimization across the
same corpus of encoded latent vectors. Our PCA imple-
mentation retained three principal components explaining
79.4% of variance, with clear correlations to audio fea-
tures: PC1 with spectral centroid (r = 0.78), PC2 with
temporal envelope characteristics, and PC3 with harmonic
content. The t-SNE implementation used perplexity = 50
with 1000 iterations after testing multiple configurations,
while UMAP parameters (n-neighbors = 15, min-dist =
0.1) balanced local and global structure preservation.

Quantitative evaluation metrics included neighborhood
preservation, trustworthiness, continuity, and feature cor-
relation. Results showed t-SNE excelled in neighbor-
hood preservation (76.3%) but performed poorly on con-
tinuity (0.71). UMAP achieved better balance (68.9%
preservation, 0.83 continuity), while PCA offered the most
consistent global organization despite lower neighborhood
preservation (53.2%). Crucially, PCA demonstrated the

strongest correlation between its dimensions and perceptu-
ally relevant audio features, providing more interpretable
navigation axes for creative applications.

4.2 Timbre Space Musical Exploration

The practical implementation of the system helped us to
test the hypothesis that interacting with pre-encoded audio
representations offers a more intuitive approach to explor-
ing latent space in real-time sound synthesis.

Through a series of short musical improvisation sessions
with volunteers from our department, we observed that
PCA visualization effectively enabled participants to asso-
ciate each cluster with a specific sonic quality and navigate
the timbral map. In particular, we observed how partici-
pants observed that the central regions of each cluster ex-
hibited minimal timbral variation, making them highly pre-
dictable, while the outer boundaries contained more dis-
tinguishable content, grouping sonically similar audio seg-
ments (e.g., based on pitch or noisiness) into distinct re-
gions.

As participants gained familiarity with the timbral clus-
ters, they were able to structure musical improvisations
around their recognition of different sonic regions. The
graphical interface played a crucial role in enhancing par-
ticipants’ understanding of how RAVE organizes timbral
variations. It allowed for more deliberate navigation to-
ward desired sonic outcomes, such as bright harmonic tex-
tures or subdued, textural sounds—a level of control that
was less apparent in t-SNE or UMAP projections, where
latent spaces appeared more entangled.

In conclusion, PCA-based navigation yielded interactions
that participants described as more predictable and musi-
cally coherent than scanning the full latent space at ran-
dom. We stress, however, that a base level of predictability
already exists in the un-rotated RAVE axes—particularly
the first two or three— which are only loosely correlated in
our PCA but remain partially disentangled in their original
form. What PCA chiefly adds is an ordering and weight-
ing of those axes, highlighting the “clean” ones while
compressing or combining the more entangled directions,
thereby streamlining real-time control without discarding
the expressive potential of the native latent space.

4.3 Interaction

Interacting with a multidimensional data space in real time
is one of the most challenging tasks for a musician. The
PCA approach helps mitigate this complexity by reducing
the number of dimensions to explore. However, even with
dimensionality reduction, designing interfaces that balance
the inherent complexity of the data with intuitive control
remains difficult.

In our case, the rounded multitouch LCD interface al-
lowed for direct selection of data points within the inter-
active space. Without the need for intermediary controls,
we could quickly choose timbres and create expressive tra-
jectories between data points. The ability to loop sonic tra-
jectories, a technique often used in musical video games,
freed us from manually selecting data points in real time,
enabling a more fluid interaction with the gestural system.



Figure 11. Performing two NEBULA musical instruments

Despite these advantages, physical interaction with the
screen proved ergonomically limiting, restricting a more
embodied exploration of the sonic content linked to the
data points. Recognizing this limitation, we integrated a
gestural sensor system to enhance the depth of embodied
interaction.

To further investigate the musical potential of this sys-
tem, the authors conducted three improvisation sessions
with the instruments (see Figure 11). Video excerpts from
our improvisations are available online 5 As experienced
digital musicians already familiar with RAVE models, we
found that the PCA-based method creatively constrained
our musicking, shaping how we engaged with the pre-
encoded audio material. The necessity of pre-encoding
sound prior to performance structured our improvisations,
leading us to develop a repertoire of PCA-generated data
clouds that could be interactively loaded. These functioned
as a form of graphic score, guiding our sonic explorations
in new directions. Consequently, the PCA approach not
only structured our performances but also inspired us to
design a series of PCA-based sound maps for live impro-
visation.

5. DISCUSSION

The implementation of our Principal Component Analysis
(PCA)-based method warrants further discussion. We have
identified key advantages and limitations that inform its ef-
fectiveness in the context of audio navigation and sound
design.

Advantages: The proposed PCA-based approach offers a
fast, stable, and transparent means of reducing dimension-
ality, making it particularly well-suited for both live and
studio applications. The principal components serve as in-
tuitive, interpretable control parameters, effectively func-
tioning as multidimensional “sliders” that allow artists to
explore sonic transformations with deliberate intent. This
structured navigation provides an accessible yet powerful
framework for interacting with complex timbral spaces.

Limitations:
Despite its advantages, the linear nature of PCA presents

certain constraints. Specifically, it may not effectively cap-
5 https://github.com/tamlablinz/RAVE_PCA.

ture fine-grained variations in sound, particularly those as-
sociated with highly nuanced timbral characteristics. In
contrast, nonlinear dimensionality reduction techniques
(e.g., t-SNE or UMAP) can offer a more refined separa-
tion of features, which may be preferable for applications
requiring highly specific timbral control. This limitation
highlights a potential trade-off between computational ef-
ficiency and perceptual accuracy in sound exploration. Ad-
ditionally, although PCA helps reorganise the latent space,
it does not create disentanglement; RAVE’s encoder al-
ready handles some of that work in its low-index dimen-
sions, leaving only the higher-index coordinates densely
entangled and hard to label. Consequently, our linear pro-
jection can still miss subtle timbral cues that live in those
later, mixed dimensions.

To address these limitations and enhance the method’s
applicability, we propose the following refinements:

• Hybrid Dimensionality Reduction: A combined ap-
proach leveraging PCA for initial global structuring,
followed by UMAP or t-SNE for localized refine-
ments, could facilitate more context-sensitive sound
design. This hybrid method would retain PCA’s
efficiency while integrating nonlinear adaptability
where finer control is needed.

• Temporal Analysis of Latent Representations: In-
vestigating the time-dependent evolution of embed-
dings within RAVE’s latent space could provide new
strategies for gesture-based transformations. This
could enable dynamic sound-shaping methods in-
formed by temporal patterns and expressive perfor-
mance gestures.

• User-Labeled Axes for Enhanced Interpretabil-
ity: Integrating semantic descriptors (e.g., “warm,”
“metallic,” “grainy”) alongside PCA-derived princi-
pal components could reinforce interpretability and
afford users greater direct control over sonic explo-
ration. By aligning computational features with per-
ceptually meaningful attributes, this approach could
bridge the gap between data-driven and artist-driven
sound manipulation.

These developments aim to refine and extend the PCA-
based method, ensuring greater expressivity, precision, and
adaptability in creative audio applications.

6. CONCLUSIONS

This paper has introduced a PCA-based methodology for
navigating and visualizing the latent space of a RAVE
autoencoder, addressing a fundamental challenge in deep
generative sound synthesis—the difficulty of directing
models toward specific musical or timbral outcomes. By
pre-encoding audio data and subsequently projecting the
resulting latent vectors using Principal Component Analy-
sis (PCA), this approach enables a more intuitive selection,
refinement, and manipulation of sound.

A comparative analysis with t-SNE and UMAP under-
scores the trade-offs between interpretability and granular-
ity in latent space representations. While PCA provides

https://github.com/tamlablinz/RAVE_PCA.


transparent and efficient dimensionality reduction, nonlin-
ear techniques such as t-SNE and UMAP offer finer detail
at the cost of computational efficiency and real-time appli-
cability.

Furthermore, the graphical user interface (GUI) devel-
oped as part of this study demonstrates how interactive vi-
sual and auditory feedback loops enhance artistic curation
and musical exploration of the latent space. The findings
suggest that PCA serves as an effective, lightweight, and
interpretable tool for both sound design and performance-
oriented applications. This research lays the groundwork
for future exploration into hybrid approaches, combining
PCA with nonlinear dimensionality reduction techniques,
and for the development of user-guided strategies that fur-
ther refine the controllability and expressivity of generative
sound synthesis systems.
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