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ABSTRACT

This paper introduces a novel approach for utilizing Sim-
plex noise in musical exploration via a Pure Data (Pd)
external object. While previous applications of gradient
noise in sound synthesis have focused on sampling from
one-dimensional noise spaces, we present a framework for
navigating multi-dimensional noise spaces through care-
fully designed trajectories. Our implementation, based on
Stefan Gustavson’s optimized algorithm, enables exploration
across multiple time scales — from micro-level sound syn-
thesis to macro-level compositional patterns. The object
provides variable octaves, persistence control, and deriva-
tive outputs, creating new possibilities for both precise tim-
bral control and emergent musical structures.

1. INTRODUCTION

Pure Data (Pd) [1] is a widely-used visual programming
environment for audio processing. While Pd includes ran-
dom number generators and noise-related externals, to our
knowledge, it lacks a dedicated object for sampling from
coherent gradient noise spaces like Simplex noise, which
offers unique properties for musical applications. This pa-
per introduces a new external object implementing Sim-
plex noise, providing smooth, continuous random values
suitable for parameter control and sound synthesis.

Our work treats multi-dimensional noise spaces as envi-
ronments to be navigated through carefully designed tra-
jectories rather than as simple waveform generators, en-
abling both complex sonic patterns and broader musical
applications across different time scales.

2. RELATED WORK

While gradient noise has been extensively used in visual
contexts, its application to sound synthesis represents a rel-
atively unexplored area with significant potential. Popov [2]
demonstrated the use of 1D Perlin noise and fractional Brow-
nian motion for generating pitched tones with distinctive
digital timbres, implementing these techniques in a VST/AU
plugin called Andes. His work focused specifically on one-
dimensional noise for direct waveform synthesis, choosing
to concentrate on this dimension as most relevant for his
sound synthesis goals.
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3. BACKGROUND
3.1 Historical Context

Ken Perlin’s gradient noise algorithm [3] revolutionized
procedural content generation in computer graphics. The
algorithm was equally groundbreaking for both terrain gen-
eration and texture synthesis, enabling the creation of natural-
looking landscapes as well as organic textures like clouds
and fire. The algorithm earned Perlin an Academy Award
for Technical Achievement and has since become a fun-
damental tool in computer graphics. He later improved
his original algorithm with Simplex noise [4], which ad-
dressed computational inefficiencies and directional arti-
facts in the original method. Gustavson further optimized
the algorithm [5] and provided accessible implementations
that have been widely adopted across various fields.

3.2 Characteristics of Gradient Noise

Unlike traditional random number generators, gradient noise
functions like Perlin noise and Simplex noise have several
key properties that make them suitable for both visual and
audio applications:

* Determinism: Given the same input coordinates,
the noise function always produces the same output
value, allowing for predictable and reproducible re-
sults

* Continuity: The function produces smoothly vary-
ing values with no sudden jumps, creating natural-
looking and natural-sounding variations

4. IMPLEMENTATION
4.1 Development Process

The development of this external object began with an ex-
ploration of noise algorithms using vanilla Pure Data ob-
jects. Initial prototypes included implementations of 1D,
2D, and 3D Perlin noise (Figure 1) as well as a 3D Simplex
noise patch (Figure 2), both created entirely with vanilla Pd
objects.

While these vanilla implementations worked well as proof-
of-concept, a compiled version was preferred to avoid per-
formance concerns when using multiple instances with many
octaves for practical musical use. The core algorithm is
based on Gustavson’s optimized Simplex noise implemen-
tation !, which supports up to 4D noise and was adapted
for the Pure Data environment with additional features specif-
ically designed for musical applications.

'https://github.com/stegu/perlin-noise
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Figure 1. First attempt at a 3D Perlin noise patch in vanilla Pd, created
based on Perlin’s reference implementation

Figure 2. Vanilla Pure Data implementation of 3D Simplex noise

The resulting external is available on GitHub? and can
be installed directly through Deken, Pure Data’s package
manager. This ensures easy accessibility for the Pd com-
munity and encourages further experimentation with gra-
dient noise-based synthesis techniques.

4.2 Object Design

The object automatically derives the noise’s dimensional-
ity based on the multichannel input signal, supporting 1D
to 4D noise spaces. It is designed to facilitate the use of
noise as a multi-dimensional space to be navigated.

Flexible control is provided through multiple inlets, out-
lets, and creation arguments:

* Primary inlet: Accepts up to 4 dimensions of input
coordinates (as multichannel signal)

* Secondary inlet: Signal rate control of persistence
value (relevant for multiple octaves)

* Main outlet: Outputs the noise value as a signal

* Optional derivative outlet: When enabled with the
—d flag, outputs the derivatives of the noise function

2https://github.com/ben-wes/pd-simplex
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Figure 3. Screenshot of the Simplex noise external help file in Pure Data,
showing outputs for sampling from different dimensions.

Creation arguments and messages:

e -n flag: Normalizes output range to ensure it stays
within -1 to 1

e —d flag: Enables the second outlet for derivatives
output

* seed message or —s flag: Sets a specific seed value
for reproducible results or reseeds randomly when
no argument is provided

* coeffs message: Allows custom scaling of oc-
taves beyond the default powers of 2

5. MUSICAL APPLICATIONS
5.1 Trajectories in Noise Space

N-dimensional noise space can be conceptualized as a con-
tinuous random field that can be “sampled” by moving
through it along defined trajectories. Since the noise func-
tion is deterministic, following the same path through this
space always yields the same sequence of values. In Gus-
tavson’s implementation, the noise space repeats every 768
units in one and three dimensions, which creates repeating
patterns when trajectories exceed these boundaries.

Gradient noise itself is not inherently musical — it’s the
strategic traversal through the noise space that creates mu-
sically meaningful structures. To generate pitched sounds,
we must sample the noise space periodically, with the sam-
pling frequency determining the fundamental pitch. This
represents a departure from traditional synthesis where os-
cillators sample from simple periodic functions.

While previous work by Popov [2] focused specifically
on one-dimensional noise for direct waveform generation,
our approach treats noise as a multi-dimensional space to
be navigated. A popular technique in visual arts is to sam-
ple values with a circular movement in noise space to cre-
ate seamless looping patterns [6].
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We adapted this concept for musical applications:

z(t) = rcos(2m ft)

y(t) = rsin(27w ft) M

Where r is the radius and f determines the fundamental
frequency of the resulting waveform. Figure 4 shows two
cycles of such a circular movement through a noise space
with three octaves (persistence 0.5, resulting in coefficients
of 1, 0.5, and 0.25). While the combined octaves create a
complex waveform characteristic of fractional Brownian
motion, a pure circular trajectory in 2D noise would still
produce the same pattern in each cycle, resulting in a static
timbre.

Figure 4. Visualization of combined octaves in noise output. The layered
graphs show individual octave contributions (thin lines) and their sum
(thickest line).

5.2 Multi-Dimensional Trajectories for Timbral
Evolution

By extending the trajectory to higher dimensions, we can
achieve more complex and evolving timbres. A spiral tra-
jectory in three dimensions introduces variation over time
while maintaining periodicity:

x(t) = r cos(2m ft)

y(t) = rsin(27 ft)
z(t) = vt

@

Here, the additional dimension z(t) creates a slow evolu-
tion of the timbre over time as the trajectory moves through
different “’slices” of the noise space. The parameter v con-
trols the rate of timbral evolution. Figure 5 shows a basic
Pure Data patch implementing this spiral movement.

The spectrograms in Figure 6 display frequencies up to
20kHz on a logarithmic scale, using the same seed across
all examples. The baseline column shows single-octave
noise sampled with a circular trajectory at 440Hz with ra-
dius 0.1, while other columns demonstrate the effect of
adding higher octaves with different parameter combina-
tions.
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Figure 5. A basic Pure Data patch demonstrating spiral trajectory sam-
pling in 3D noise space.

5.3 Multi-Scale Applications

The versatility of noise trajectories allows for application
across multiple time scales:

* Micro level (audio rate): Generating waveforms
with unique and evolving timbres

* Meso level (control rate): Creating modulation sources
for parameters like filter cutoff, amplitude, or spatial
position

* Macro level (compositional): Generating melodic
and rhythmic patterns through low-frequency sam-
pling and threshold detection

Figure 7 demonstrates melodic pattern generation through
quantization to a major scale. Using a closed circular tra-
jectory results in a repeating melodic pattern (a), while
adding an offset to the circular trajectory creates an evolv-
ing melody that maintains coherent musical phrases (b).

Nested modulation chains extend these techniques: a slow-
moving trajectory can modulate parameters of another tra-
jectory used for audio synthesis, combining periodic and
non-periodic elements into evolving timbral structures.

Multiple channels of coherent output can be achieved ei-
ther through using multiple instances with different seeds
or offset coordinates or through the derivative output, which
efficiently provides additional dimensions of coherent vari-
ation from a single trajectory.

Beyond the circular and spiral trajectories described above,
any closed trajectory can create repeating patterns and wave-
forms. With 4D noise, this extends to 3D trajectories mov-
ing through the fourth dimension, similar to how a circular
motion along a third dimension creates a spiral trajectory.

6. EVALUATION

Initial performance testing shows that the external version
significantly outperforms equivalent vanilla Pd patches, es-
pecially for higher-dimensional noise and multiple octaves.
On a typical modern system, more than 1000 octaves of
3D noise at audio rate can be processed without buffer un-
derruns, demonstrating its suitability for real-time applica-
tions.
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Baseline Low Persistence Default Persistence

(1 oct, rad=0.1)

Larger Radius
(3 oct, rad=1)

(3 oct, pers=0.1) (3 oct, pers=0.5)

Figure 6. Spectrograms showing different parameter combinations of
simplex noise output. Rows show increasing vertical movement speeds
(0-1000 units/s), columns compare octave count, persistence, and radius
variations.

7. CONCLUSIONS

This paper has described an implementation of Simplex
noise as a Pure Data external object, building upon previ-
ous work on gradient noise in musical applications. While
earlier approaches like Popov’s explored one-dimensional
noise for waveform generation, our work investigates the

potential of multi-dimensional exploration through trajectory-

based sampling, offering possibilities for various musical
applications across different time scales.

The combination of multi-dimensional sampling, variable
octaves and derivative output provides musicians with a
versatile tool, where coherent noise can serve different roles
from sound synthesis to compositional aid.

Additional areas for future research include extended tra-
jectory designs, possibly higher dimensionalities and ap-
plications in spatial audio - primarily in the context of ex-
periments with spatial synthesis, which is the author’s cur-
rent research focus, and where simplex noise itself can be
used to create spatial trajectories.
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(a) Repeating melody

(b) Evolving melody

Figure 7. Melodic patterns generated by quantizing noise values to a
major scale
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