PdMaxCon25~, September 5-7, 2025, University of lllinois Urbana-Champaign, School of Music

simplex~: Exploring Musical Trajectories in Simplex Noise Space

Benjamin Wesch
Tangible Music Lab, University of Art and Design Linz, Linz, Austria
benjamin.wesch@kunstuni-linz.at

ABSTRACT

This paper introduces a novel approach for utilizing Sim-
plex noise in musical exploration via a Pure Data (Pd)
external object. While previous applications of gradient
noise in sound synthesis have focused on sampling from
one-dimensional noise spaces, we present a framework for
navigating multi-dimensional noise spaces through care-
fully designed trajectories. Our implementation, based on
Stefan Gustavson’s optimized algorithm, enables exploration
across multiple time scales — from micro-level sound syn-
thesis to macro-level compositional patterns. The object
provides variable octaves, persistence control, and deriva-
tive outputs, creating new possibilities for both precise tim-
bral control and emergent musical structures.

1. INTRODUCTION

Pure Data (Pd) [1] is a widely-used visual programming
environment for audio processing. While Pd includes ran-
dom number generators and noise-related externals, to our
knowledge, it lacks a dedicated object for sampling from
coherent gradient noise spaces like Simplex noise, which
offers unique properties for musical applications. This pa-
per introduces a new external object implementing Sim-
plex noise, providing smooth, continuous random values
suitable for parameter control and sound synthesis.

Our work treats multi-dimensional noise spaces as envi-
ronments to be navigated through carefully designed tra-
jectories rather than as simple waveform generators, en-
abling both complex sonic patterns and broader musical
applications across different time scales.

2. RELATED WORK

While gradient noise has been extensively used in visual
contexts, its application to sound synthesis represents a rel-
atively unexplored area with significant potential. Popov [2]
demonstrated the use of 1D Perlin noise and fractional Brow-
nian motion for generating pitched tones with distinctive
digital timbres, implementing these techniques in a VST/AU
plugin called Andes. His work focused specifically on one-
dimensional noise for direct waveform synthesis, choosing
to concentrate on this dimension as most relevant for his
sound synthesis goals.

Copyright: ©2025 Benjamin Wesch et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License

3.0 Unported, which permits unrestricted use, distribution, and reproduc-

tion in any medium, provided the original author and source are credited.

137

3. BACKGROUND
3.1 Historical Context

Ken Perlin’s gradient noise algorithm [3] revolutionized
procedural content generation in computer graphics. The
algorithm was equally groundbreaking for both terrain gen-
eration and texture synthesis, enabling the creation of natural-
looking landscapes as well as organic textures like clouds
and fire. The algorithm earned Perlin an Academy Award
for Technical Achievement and has since become a fun-
damental tool in computer graphics. He later improved
his original algorithm with Simplex noise [4], which ad-
dressed computational inefficiencies and directional arti-
facts in the original method. Gustavson further optimized
the algorithm [5] and provided accessible implementations
that have been widely adopted across various fields.

3.2 Characteristics of Gradient Noise

Unlike traditional random number generators, gradient noise
functions like Perlin noise and Simplex noise have several
key properties that make them suitable for both visual and
audio applications:

* Determinism: Given the same input coordinates,
the noise function always produces the same output
value, allowing for predictable and reproducible re-
sults

* Continuity: The function produces smoothly vary-
ing values with no sudden jumps, creating natural-
looking and natural-sounding variations

4. IMPLEMENTATION
4.1 Development Process

The development of this external object began with an ex-
ploration of noise algorithms using vanilla Pure Data ob-
jects. Initial prototypes included implementations of 1D,
2D, and 3D Perlin noise (Figure 1) as well as a 3D Simplex
noise patch (Figure 2), both created entirely with vanilla Pd
objects.

While these vanilla implementations worked well as proof-
of-concept, a compiled version was preferred to avoid per-
formance concerns when using multiple instances with many
octaves for practical musical use. The core algorithm is
based on Gustavson’s optimized Simplex noise implemen-
tation !, which supports up to 4D noise and was adapted
for the Pure Data environment with additional features specif-
ically designed for musical applications.

'https://github.com/stegu/perlin-noise

mailto:benjamin.wesch@kunstuni-linz.at
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://github.com/stegu/perlin-noise

PdMaxCon25~, September 5-7, 2025, University of lllinois Urbana-Champaign, School of Music

Figure 1. First attempt at a 3D Perlin noise patch in vanilla Pd, created
based on Perlin’s reference implementation

Figure 2. Vanilla Pure Data implementation of 3D Simplex noise

The resulting external is available on GitHub? and can
be installed directly through Deken, Pure Data’s package
manager. This ensures easy accessibility for the Pd com-
munity and encourages further experimentation with gra-
dient noise-based synthesis techniques.

4.2 Object Design

The object automatically derives the noise’s dimensional-
ity based on the multichannel input signal, supporting 1D
to 4D noise spaces. It is designed to facilitate the use of
noise as a multi-dimensional space to be navigated.

Flexible control is provided through multiple inlets, out-
lets, and creation arguments:

* Primary inlet: Accepts up to 4 dimensions of input
coordinates (as multichannel signal)

* Secondary inlet: Signal rate control of persistence
value (relevant for multiple octaves)

* Main outlet: Outputs the noise value as a signal

* Optional derivative outlet: When enabled with the
—d flag, outputs the derivatives of the noise function

2https://github.com/ben-wes/pd-simplex

138

Figure 3. Screenshot of the Simplex noise external help file in Pure Data,
showing outputs for sampling from different dimensions.

Creation arguments and messages:

e -n flag: Normalizes output range to ensure it stays
within -1 to 1

e —d flag: Enables the second outlet for derivatives
output

* seed message or —s flag: Sets a specific seed value
for reproducible results or reseeds randomly when
no argument is provided

* coeffs message: Allows custom scaling of oc-
taves beyond the default powers of 2

5. MUSICAL APPLICATIONS
5.1 Trajectories in Noise Space

N-dimensional noise space can be conceptualized as a con-
tinuous random field that can be “sampled” by moving
through it along defined trajectories. Since the noise func-
tion is deterministic, following the same path through this
space always yields the same sequence of values. In Gus-
tavson’s implementation, the noise space repeats every 768
units in one and three dimensions, which creates repeating
patterns when trajectories exceed these boundaries.

Gradient noise itself is not inherently musical — it’s the
strategic traversal through the noise space that creates mu-
sically meaningful structures. To generate pitched sounds,
we must sample the noise space periodically, with the sam-
pling frequency determining the fundamental pitch. This
represents a departure from traditional synthesis where os-
cillators sample from simple periodic functions.

While previous work by Popov [2] focused specifically
on one-dimensional noise for direct waveform generation,
our approach treats noise as a multi-dimensional space to
be navigated. A popular technique in visual arts is to sam-
ple values with a circular movement in noise space to cre-
ate seamless looping patterns [6].

https://github.com/ben-wes/pd-simplex

PdMaxCon25~, September 5-7, 2025, University of lllinois Urbana-Champaign, School of Music

We adapted this concept for musical applications:

z(t) = rcos(2m ft)

y(t) = rsin(27w ft) M

Where r is the radius and f determines the fundamental
frequency of the resulting waveform. Figure 4 shows two
cycles of such a circular movement through a noise space
with three octaves (persistence 0.5, resulting in coefficients
of 1, 0.5, and 0.25). While the combined octaves create a
complex waveform characteristic of fractional Brownian
motion, a pure circular trajectory in 2D noise would still
produce the same pattern in each cycle, resulting in a static
timbre.

Figure 4. Visualization of combined octaves in noise output. The layered
graphs show individual octave contributions (thin lines) and their sum
(thickest line).

5.2 Multi-Dimensional Trajectories for Timbral
Evolution

By extending the trajectory to higher dimensions, we can
achieve more complex and evolving timbres. A spiral tra-
jectory in three dimensions introduces variation over time
while maintaining periodicity:

x(t) = r cos(2m ft)

y(t) = rsin(27 ft)
z(t) = vt

@

Here, the additional dimension z(t) creates a slow evolu-
tion of the timbre over time as the trajectory moves through
different “’slices” of the noise space. The parameter v con-
trols the rate of timbral evolution. Figure 5 shows a basic
Pure Data patch implementing this spiral movement.

The spectrograms in Figure 6 display frequencies up to
20kHz on a logarithmic scale, using the same seed across
all examples. The baseline column shows single-octave
noise sampled with a circular trajectory at 440Hz with ra-
dius 0.1, while other columns demonstrate the effect of
adding higher octaves with different parameter combina-
tions.

139

phasor~ 188

Figure 5. A basic Pure Data patch demonstrating spiral trajectory sam-
pling in 3D noise space.

5.3 Multi-Scale Applications

The versatility of noise trajectories allows for application
across multiple time scales:

* Micro level (audio rate): Generating waveforms
with unique and evolving timbres

* Meso level (control rate): Creating modulation sources
for parameters like filter cutoff, amplitude, or spatial
position

* Macro level (compositional): Generating melodic
and rhythmic patterns through low-frequency sam-
pling and threshold detection

Figure 7 demonstrates melodic pattern generation through
quantization to a major scale. Using a closed circular tra-
jectory results in a repeating melodic pattern (a), while
adding an offset to the circular trajectory creates an evolv-
ing melody that maintains coherent musical phrases (b).

Nested modulation chains extend these techniques: a slow-
moving trajectory can modulate parameters of another tra-
jectory used for audio synthesis, combining periodic and
non-periodic elements into evolving timbral structures.

Multiple channels of coherent output can be achieved ei-
ther through using multiple instances with different seeds
or offset coordinates or through the derivative output, which
efficiently provides additional dimensions of coherent vari-
ation from a single trajectory.

Beyond the circular and spiral trajectories described above,
any closed trajectory can create repeating patterns and wave-
forms. With 4D noise, this extends to 3D trajectories mov-
ing through the fourth dimension, similar to how a circular
motion along a third dimension creates a spiral trajectory.

6. EVALUATION

Initial performance testing shows that the external version
significantly outperforms equivalent vanilla Pd patches, es-
pecially for higher-dimensional noise and multiple octaves.
On a typical modern system, more than 1000 octaves of
3D noise at audio rate can be processed without buffer un-
derruns, demonstrating its suitability for real-time applica-
tions.

PdMaxCon25~, September 5-7, 2025, University of lllinois Urbana-Champaign, School of Music

Baseline Low Persistence Default Persistence

(1 oct, rad=0.1)

Larger Radius
(3 oct, rad=1)

(3 oct, pers=0.1) (3 oct, pers=0.5)

Figure 6. Spectrograms showing different parameter combinations of
simplex noise output. Rows show increasing vertical movement speeds
(0-1000 units/s), columns compare octave count, persistence, and radius
variations.

7. CONCLUSIONS

This paper has described an implementation of Simplex
noise as a Pure Data external object, building upon previ-
ous work on gradient noise in musical applications. While
earlier approaches like Popov’s explored one-dimensional
noise for waveform generation, our work investigates the

potential of multi-dimensional exploration through trajectory-

based sampling, offering possibilities for various musical
applications across different time scales.

The combination of multi-dimensional sampling, variable
octaves and derivative output provides musicians with a
versatile tool, where coherent noise can serve different roles
from sound synthesis to compositional aid.

Additional areas for future research include extended tra-
jectory designs, possibly higher dimensionalities and ap-
plications in spatial audio - primarily in the context of ex-
periments with spatial synthesis, which is the author’s cur-
rent research focus, and where simplex noise itself can be
used to create spatial trajectories.

Acknowledgments

Thanks to Miller Puckette for developing Pure Data, to
Ken Perlin for the Simplex noise algorithm, and special
thanks to Stefan Gustavson for his optimized implementa-
tion of the Simplex noise algorithms and his support and
feedback on the audio applications presented in this paper.

140

(a) Repeating melody

(b) Evolving melody

Figure 7. Melodic patterns generated by quantizing noise values to a
major scale

8. REFERENCES

[1] M. Puckette, “Pure Data: Recent Progress,” in Pro-
ceedings of the International Computer Music Confer-
ence, 1997, pp. 224-227.

[2] A. Popov, “Using Perlin noise in sound synthesis,”
in Proceedings of the Linux Audio Conference 2018,
2018. [Online]. Available: https://lac.linuxaudio.org/

2018/pdf/14-paper.pdf

[3] K. Perlin, “An Image Synthesizer,” ACM SIGGRAPH
Computer Graphics, vol. 19, no. 3, pp. 287-296, 1985.
[Online]. Available: https://doi.org/10.1145/325334.

325247

[4] , ‘“Noise Hardware,” in Course Notes from
Siggraph 2002, Course 36: Real-Time Shading
Languages, 2002, also published as “Improving
Noise” in ACM Transactions on Graphics, Vol. 21,
No. 3, pp. 681-682. [Online]. Available: https:
/Iwww.csee.umbc.edu/~olano/s2002c¢36/ch02.pdf

[51 S. Gustavson, “Simplex Noise Demysti-
fied,” 2005, self-published tutorial. [Online].
Available: https://www.researchgate.net/publication/

216813608 _Simplex_noise_demystified
(6]

Necessary Disorder, “Drawing from noise, and then
making animated loopy GIFs from there,” Blog
post, 2017, accessed: 2025. [Online]. Available:

https://necessarydisorder.wordpress.com/2017/11/15/

https://lac.linuxaudio.org/2018/pdf/14-paper.pdf
https://lac.linuxaudio.org/2018/pdf/14-paper.pdf
https://doi.org/10.1145/325334.325247
https://doi.org/10.1145/325334.325247
https://www.csee.umbc.edu/~olano/s2002c36/ch02.pdf
https://www.csee.umbc.edu/~olano/s2002c36/ch02.pdf
https://www.researchgate.net/publication/216813608_Simplex_noise_demystified
https://www.researchgate.net/publication/216813608_Simplex_noise_demystified
https://necessarydisorder.wordpress.com/2017/11/15/

	001_ConferenceBook_v2
	1_PdMaxCon25_Camera-ready_144
	2_PdMaxCon25_Camera-ready_81
	INTRODUCTION
	spectral Chorusing
	Spectral Sidechains
	Rhythmic spike filters
	Spectral Scratching with Video
	CONCLUSIONS
	REFERENCES

	3_OliverLaRosa_PdMaxCon2025
	001_ConferenceBook_v2
	4_PdMaxCon25_Camera-ready_67
	INTRODUCTION
	Background
	Goals

	the Tinmendo app
	How it works: connecting Max and Tinmendo
	Tinmendo slides
	The Sequencer slides
	The Typing/Chat slide
	The Buttons slide
	The Gyroscope slide
	The Sample Player slide
	Technical challenges
	Privacy and Security
	Network speed, congestion and storage
	Conceptual challenges and testing

	Future work
	Work in progress
	Future directions

	CONCLUSIONS
	REFERENCES

	001_ConferenceBook_v2
	5_PdMaxCon25_Camera-ready_128
	 1. Introduction
	 2. EV Overview
	 3. Related Pd Instruments and Ecosystems
	3.1 Instruments
	3.2 Preset Systems

	 4. EV Implementation
	4.1 Overview

	 5. Structural Details
	5.1 Bela: Transmission Protocol
	5.2 Pd: The Core
	5.3 Pd: The String Engine
	5.4 Pd: The GUI

	 6. Specific Design Considerations
	6.1 Extensibility
	6.1.1 Sound modules
	6.1.2 Matrix sources & destinations

	6.2 GUI Screen Switcher
	6.3 Joystick Panning
	6.4 VoiceTrack

	 7. Future work
	 8. Conclusion
	 9. References

	6_PdMaxCon25_Camera-ready_92
	 1. Introduction
	 2. Looking Back
	2.1 Full STEAM Ahead
	2.2 Alphabet Soup
	2.3 There and Back Again
	2.4 Making Instruments and Pies
	2.5 Beyond L2Ork
	2.6 Administrative Leave
	2.7 Together Apart

	 3. Latest Developments
	3.1 Pd-L2Ork Identity
	3.2 L2Ork Tweeter Hackathon
	3.3 Web Invasion

	 4. Building and Downloading Pd-L2Ork
	 5. Conclusion and Future Work
	 6. Acknowledgments
	 7. References

	7_PdMaxCon25_Camera-ready_39
	 1. Introduction
	 2. Related work
	 3. The DeltaLab DL-4 and an emulation in Pure Data
	3.1 Delay time control
	3.2 Other user controls and signal path
	3.3 Pure Data Implementation details

	 4. Refining the DL-4 emulation using Summermood
	4.1 Feedback and Delay Factor range refinement
	4.2 The mystery of the LFO
	4.3 Spectral comparison of implementation

	 5. Performing and Preserving Summermood using the Null Piece and Reality Check
	 6. Discussion
	 7. References

	001_ConferenceBook_v2
	8_PdMaxCon25_Camera-ready_66
	 1. Introduction
	 2. Related Work
	 3. FM Radio Preliminaries
	 4. Implementation in Max/MSP
	4.1 FM Modulator
	4.2 FM Demodulator
	4.3 Channel Simulator

	 5. Perceptual Evaluation and Discussion
	5.1 Use Cases
	5.2 Limitations and Future Work

	 6. Conclusions
	 7. References

	9_PdMaxCon25_Camera-ready_75
	 1. Introduction
	 2. Background and Related Work
	2.1 Ableton Link
	2.2 Existing Standards
	2.3 Tonal Analysis Frameworks

	 3. Architecture
	3.1 Design Principles
	3.1.1 Decentralized Communication:
	3.1.2 Zero-Configuration Networking:
	3.1.3 Cross-Platform Extensibility:

	3.2 Protocol Overview
	3.3 Transport Mechanisms
	3.3.1 UDP Multicast (Max/MSP):
	3.3.2 WebSocket Relay (Browser Clients):

	3.4 Hybrid Integration Strategy
	3.5 Naming Standards and Alias Resolution

	 4. Implementation and Prototyping
	4.1 Overview of System Components
	4.2 Max Implementation
	4.2.1 Abstraction Design
	4.2.2 Transport Layer
	4.2.3 Applications in Max

	4.3 Web-Based Interface
	4.3.1 Frontend Design
	4.3.2 WebSocket Transport

	4.4 Developer Tools and Resources
	4.5 Cross-Platform Testing and Results

	 5. Evaluation
	5.1 Performance Metrics
	5.1.1 Latency
	5.1.2 Throughput and Stability
	5.1.3 Resource Utilization

	5.2 Usability Testing
	5.2.1 Positive Findings
	5.2.2 User-Centric Limitations

	5.3 Cross-Platform Interoperability
	5.4 Use Case Validation

	 6. Use Cases
	6.1 Improvised Performance Environments
	6.2 Music Education and Pedagogy
	6.3 Collaborative Composition and Production
	6.4 Live Coding and Algorithmic Art
	6.5 Networked Installations and Artworks

	 7. Limitations and Challenges
	7.1 No WAN-native Protocol:
	7.2 Limited DAW Support:
	7.3 Conflict Resolution:
	7.4 Basic UI/UX:

	 8. Future Directions
	8.1 MIDI Integration
	8.2 Session History and Undo
	8.3 Microtonal and Cultural Tuning Support
	8.4 DAW Plugin Integration
	8.5 Wide-Area Network (WAN) Auto-Discovery

	 9. Conclusions
	 10. Code, Web Demo and Documentation
	 11. Ethical Statement
	 12. References

	10_PdMaxCon25_Camera-ready_89
	 1. Introduction
	 2. The Max Paradigm
	 3. The Hierarchy of Incompleteness and Abstractions
	 4. Networked Labyrinth, Rhizome, and Media Materiality
	 5. Genealogies of Abstractions
	 6. Conclusion
	 7. References

	001_ConferenceBook_v2
	12_PdMaxCon25_Camera-ready_107
	13_PdMaxCon25_Camera-ready_93
	 1. Introduction
	 2. Related Work
	2.1 Channel-Based Spatialization
	2.2 Spatial Sound Synthesis
	2.3 Audio-Rate Modulation

	 3. The Zerr~ Externals
	3.1 General Design
	3.2 Pure Data Package
	3.3 Max Package
	3.4 Comparison & Further Development

	 4. Exploring Zerr~ in PD
	4.1 Basic Considerations
	4.2 Basic Structure
	4.3 Building Blocks
	4.3.1 Synth Modules
	4.3.2 Send Module
	4.3.3 Spatialization Modules

	4.4 Spatialization Algorithms
	4.4.1 Vector Panning
	4.4.2 Cartesian Panning
	4.4.3 Spread Modulation
	4.4.4 Triggered Jumps

	 5. Conclusion
	5.1 Externals and Implementation
	5.2 Exploration and Performance

	 6. References

	001_ConferenceBook_v2
	14_NP_PdMaxCon25_Camera-ready_68
	OVERVIEW
	FUNCTIONALITY
	1.1 [param] Abstraction
	1.2 [memo] Abstraction
	1.3 Utility Abstractions and Additional Resources

	Software developed with COMEMO-PD
	1.4 [ARRAST_VJ] – Software for audiovisual creation
	1.5 ESMERIL – Application for music creation, performance, and distribution
	1.6 SINAPSE – Modular system for audiovisual creation
	1.7 FETXT – Corrosive synthesizer

	Final considerations
	REFERENCES

	15_NP_PdMaxCon25_Camera-ready_90
	 1. Introduction
	 2. Dolby Atmos: Relevant Spatial Paradigms
	 3. Electroacoustic Composition and ADM: An Integrative Approach
	3.1 Integrated Workflow
	3.2 Binaural Rendering in Dolby Atmos
	3.3 Reverse Decoding and Artistic Integrity
	3.4 Advantages of the Integrative Approach

	 4. Case Study: A Possible Application Example”
	4.1 Technical Implementation
	4.2 Integration with Dolby Atmos: The Bridge Patch
	4.3 Mastering and Publication

	 5. Conclusions
	 6. References

	16_NP_PdMaxCon25_Camera-ready_118
	 1. Introduction
	 2. Background
	2.1 Modal Synthesis in Max and Pd
	2.2 Non-linear Modal Models

	 3. Max Implementation
	3.1 Interaction

	 4. Conclusions
	 5. References

	17_NP_PdMaxCon25_Camera-ready_130
	 1. Introduction
	 2. Related Work
	 3. Background
	3.1 Historical Context
	3.2 Characteristics of Gradient Noise

	 4. Implementation
	4.1 Development Process
	4.2 Object Design

	 5. Musical Applications
	5.1 Trajectories in Noise Space
	5.2 Multi-Dimensional Trajectories for Timbral Evolution
	5.3 Multi-Scale Applications

	 6. Evaluation
	 7. Conclusions
	 8. References

	18_NP_PdMaxCon25_Camera-ready_162
	 1. Introduction
	 2. Existing approaches
	 3. Implementation
	3.1 General architecture
	3.2 PureData and Max implementation
	3.3 Layering and binding design

	 4. Case studies
	4.1 Case study: UltraLeap object
	4.2 Case study: implementing a new feature
	4.2.1 Scheduler feature

	4.3 Case study: porting an object

	 5. Major examples
	 6. Results
	 7. REFERENCES

	19_NP_MaxPDCon2025_MotionShaper_XuSun
	 1. Introduction
	 2. Theoretical Foundations
	2.1 Spectro-Morphology and Its Relevance for Audiovisual Composition
	2.2 Morphological Synchresis as a Structural Mapping Framework
	2.3 Motion as the Connecting Factor

	 3. System Design
	3.1 Architecture Overview
	3.1.1 Motion Envelope as a Core Mechanism
	3.1.2 System Components

	3.2 Audio Motion Shaper (AMS)
	3.2.1 Audio Motion Envelope (AME) Module
	3.2.2 Envelope Patch Gain Control (EPGC) Module
	3.2.3 Audio Generation and Processing (AGP) Module

	3.3 Visual Motion Shaper (VMS)
	3.3.1 Visual Motion Envelope (VME) Module
	3.3.2 Envelope Patch Gain Control (EPGC) Module
	3.3.3 OSCDT (OSC Data Transmission) Module

	3.4 Global Control

	 4. Application: Undercurrent Installation
	4.1 Artistic Concept
	4.2 Gesture Interaction
	4.2.1 ShapeOsc Mode (Idle State)
	4.2.2 Function Mode (Interactive State)

	4.3 Implementation Details

	 5. Future Development & Contributions
	 6. Conclusions

	11_PdMaxCon25_Camera-ready_112
	 1. Introduction
	 2. Background
	 3. Documentation
	3.1 System Architecture
	3.1.1 Syntax and Execution Model
	3.1.2 Special Forms
	3.1.3 Example Expressions
	3.1.4 Built-in Arithmetic and Logic

	3.2 Command Overview
	3.2.1 Filtering
	3.2.2 Sample Selection Functions
	3.2.3 Playlist Management
	3.2.4 Instantiation
	3.2.5 Audio Playback Control
	3.2.6 Time-Based Scheduling
	3.2.7 Logging and Querying Information

	3.3 Error Handling

	 4. Integration with Max, V8, and Gen~
	4.0.1 Execution Entry Point
	4.0.2 Global Environment and Function Injection
	4.0.3 Integration with PLISP

	4.1 Time-Based Scheduling with Max v8 Tasks

	 5. User Interface and Evaluation
	 6. Conclusion and Future Work
	 7. References

	001_ConferenceBook_v2

