Proceedings of the 1 9" Linux Audio Conference (LAC-25), Villeurbanne, France, June 26-28, 2025

PD-LUA SIGNALS AND GRAPHICS

Albert Grdf

Computer Music Dept.
Johannes Gutenberg University (JGU)
Mainz, Germany
aggraef@gmail.com

ABSTRACT

Pd-Lua is a programming extension for Miller Puckette’s Pd
which lets you develop Pd objects in the Lua scripting language.
Pd-Lua was originally designed for control processing only. The
paper describes the new facilities for signal and graphics pro-
cessing which have recently been added, so that you can now
program pretty much any kind of Pd object in Lua.

1. INTRODUCTION

Pd-Lua lets you develop Pd externals in the Lua scripting lan-
guage. It was originally written by Claude Heiland-Allen and
has since been maintained by a number of people in the Pd com-
munity [3]. Pd-Lua also ships with a large collection of instruc-
tive examples which you’ll find helpful when exploring its pos-
sibilities. Lua, from PUC Rio, is open-source (under the MIT
license), mature, and supported by a large developer community
[11]. It is a small programming language, but very capable and
easy to learn. The Lua interpreter is efficient and light-weight,
and has been designed to be easily embeddable in other environ-
ments. This makes it ideal as a Pd programming extension. For
the same reasons, it has also been very popular in game develop-
ment.

Pd-Lua was originally designed for control processing. The
paper reports on some recent work in the 0.12 version to add
signal and graphics processing. This effort was spearheaded
by Timothy Schoen who designed the API and implemented
the (vanilla) Pd and plugdata back-ends, while Benjamin Wesch
added the multi-channel support, and Albert Grif worked on
the Purr Data integration. The new release is fully backward-
compatible with Pd-Lua 0.11 (and earlier). While the signal and
graphics support has been the main focus of the 0.12 release,
there are also various other bugfixes and improvements, such as
advanced live-coding support [7]. Moreover, Benjamin Wesch
reworked our GitHub CI framework so that new releases are now
published immediately on Pd’s package manager Deken [6].

Pd-Lua works inside any reasonably modern Pd flavor. This
encompasses vanilla Pd [14], of course, but also Purr Data [5]
which includes an up-to-date version of Pd-Lua for Lua 5.4 and
has it enabled by default, so you should be ready to go imme-
diately; no need to install anything else. The same is true for
plugdata (version 0.9.1 or later), Timothy Schoen’s Pd flavor
which can also run as a plug-in inside a DAW [15]. With vanilla
Pd, you can install the pdlua package from Deken. You can also
compile Pd-Lua from source, using the Github repository [3].
Compilation instructions are in the README, and you’ll also
find some Mac and Windows binaries there. In either case, after
installing Pd-Lua from source or Deken, you also have to add
pdlua to Pd’s startup libraries.

A general introduction to Pd-Lua is beyond the scope of this
paper, instead we refer the reader to the pd-lua tutorial which
contains many step-by-step instructions and examples [8]. In
the following, we’ll first discuss how to write a signal process-
ing (a.k.a. dsp) object in Pd-Lua, and then go on to show the
implementation of a simple GUI object using the graphics APIL.
The examples presented in this paper are also available for your
perusal in the tutorial/examples folder in the sources.

Timothy Schoen

@timothyschoen
Utrecht, Netherlands
timschoenl23@gmail.com

Benjamin Wesch

Tangible Music Lab
Kunstuniversitit Linz, Austria
benjamin.weschlkunstuni-linz.at

2. SIGNALS

Enabling signal processing in a Pd-Lua object involves three in-
gredients:

1. Adding signal inlets and outlets: As in previous Pd-
Lua versions, this is done by setting the inlets and
outlets member variablesinthe initialize method.
But instead of setting each variable to just a number, you
specify a signature, which is a table indicating the sig-
nal and control in- and outlets with the special STGNAL
and DATA values. The number of in- and outlets is then
given by the size of these tables. Thus, e.g., you’d use
self.inlets = { SIGNAL, SIGNAL, DATA }
if you need two signal and one control data inlet, in that
order. Note that a number as the value of inlets or
outlets corresponds to a signature with just DATA val-
ues in it.

2. Adding a dsp method: This step is optional. The dsp
method gets invoked whenever signal processing is turned
on in Pd, passing two parameters: samplerate and
blocksize. The former tells you about the sample rate
(number of audio samples per second) Pd runs at, which
will be useful if your object needs to translate time and
frequency values from physical units (i.e., seconds, mil-
liseconds, and Hz) to sample-based time and frequency
values, so usually you want to store the given value in
a member variable of your object. The latter specifies
the block size, i.e., the number of samples Pd expects to
be processed during each call of the per form method
(see below). You only need to store that number if your
object doesn’t have any signal inlets, so that you know
how many samples need to be generated. Otherwise the
block size can also be inferred from the size of the in
tables passed to the perform method. Adding the dsp
method is optional. You only have to define it if the sig-
nal and control data processing in your object requires the
samplerate and blocksize values, or if you need
to be notified when dsp processing gets turned on or the
signal processing chain changes for some other reason.

3. Adding a perform method: This method is where the
actual signal processing happens. It receives blocks of
signal data from the inlets through its arguments, where
each block is represented as a Lua table containing float-
ing point sample values. The method then needs to re-
turn a tuple of similar Lua tables with the blocks of signal
data for each outlet. Note that the number of arguments
of the method matches the number of signal inlets, while
the number of return values corresponds to the number of
signal outlets. The perform method is not optional; if
your object outputs any signal data, the method needs to
be implemented, otherwise you’ll get a “perform: func-
tion should return a table” or similar error in the Pd con-
sole as soon as you turn on dsp processing.

In addition to the dsp and perform methods, your ob-

ject may contain any number of methods doing the usual control

data processing on the DATA inlets. It is also possible to receive

Proceedings of the 1 9" Linux Audio Conference (LAC-25), Villeurbanne, France, June 26-28, 2025

control data on the SIGNAL inlets; however, you won’t be able
to receive £ loat messages, because they will be interpreted as
constant signals which get passed as blocks of signal data to the
perform method instead.

2.1. Example 1: Mixing signals

Let us take a look at a few simple examples illustrating the kind
of processing the per form method might do. For starters, let’s
mix two signals (stereo input) down to a single (mono) output by
computing the average of corresponding samples (see Fig. 1).

W

File Edit View Put Media Windows Help

foo.pd - fhome/ag/Desktop/Pd/pdlua-tests/foosig v ~ X

220 in
L

osc~ 220 |osc~ 118

foo scope

metro 108]

tabwrite~ scope

Figure 1: Mixing signals.

We need two signal inlets and one signal outlet, so our
initialize method looks like this:

local foo = pd.class("foo")

function foo:initialize(sel, atoms)
self.inlets = {SIGNAL, SIGNAL}
self.outlets = {SIGNAL}
return true

end

And here’s the perform method (in this simple example
we don’t need foo:dsp ()):

function foo:perform(inl, in2)

for i = 1, #inl do

inl[i] = (inl([i]+in2[i])/2
end
return inl

end

Note that here we replaced the signal data in the in1 table
with the result, so we simply return the modified in1 signal; no
need to create a third out table. (This is safe because it won’t
actually modify any signal data outside the Lua method.)

2.2. Example 2: Analyzing a signal

A dsp object can also have no signal outlets at all if you just want
to process the incoming signal data in some way and output the
result through a normal control outlet. E.g., here’s one (rather
simplistic) way to compute the rms (root mean square) envelope
of a signal as control data (see Fig. 2):

function foo:initialize(sel, atoms)
self.inlets = {SIGNAL}
self.outlets = {DATA}

return true

end

86

function foo:perform(inl)
local rms = 0
for i = 1, #inl do
rms = rms + inl[i]xinl[i]
end
rms = math.sqgrt (rms/#inl)
self:outlet (1, "float", {rms})
end

o

File Edit View Put Media Windows Help

foo.pd - fhome/ag/Desktop/Pd/pdlua-tests/foosig2 v A~ X

metro 168

tabwrite~ scope

scope

8.806
rmstodb

55.67

Figure 2: Analyzing a signal.

2.3. Example 3: Generating a signal

Conversely, we can also have an object which converts control
inputs into signal data, such as this little oscillator object which
produces a sine wave (see Fig. 3):

function foo:initialize(sel,
self.inlets = {DATA}
self.outlets {SIGNAL}
self.phase =
self.freq =
self.amp =
return true

end

atoms)

0
220
0.5

-— message to set frequency...

function foo:in_1_freqg(atoms)
self.freq = atoms[1]

end

== and amplitude.

function foo:in_1_amp (atoms)
self.amp = atoms[1]

end

function foo:perform()
local freq = self.freqg
local amp = self.amp

—— calculate the angular frequency

local angular_freq = 2 % math.pi x freqg
/ self.samplerate

local out = —— result table

{1

for 1 = 1, self.blocksize do
out[i] = amp % math.sin(self.phase)
self.phase = self.phase +

angular_freq
if self.phase >= 2 % math.pi then

Proceedings of the 1 9" Linux Audio Conference (LAC-25), Villeurbanne, France, June 26-28, 2025

self.phase =
math.pi

self.phase - 2 =

end
end

return out
end

W

File Edit View Put Media Windows Help

foo.pd - /home/ag/Desktop/Pd/pdlua-tests/foosig3 v A~ X

207 [8.66

freq $§1 amp $1

/

~ scope
foo

metro 188

tabwrite~ scope

Figure 3: Generating a signal.

2.4. Multi-channel support

The examples above all employ Pd’s standard single-channel au-
dio signals. But Pd-Lua also has support for Pd’s multi-channel
signals [4]. This requires Pd 0.54 or later (all signals are single-
channel in earlier Pd versions). In Pd-Lua 0.12.20 and later, the
dsp method receives a third nchannels argument. This is a
Lua table which tells you about the number of channels in the
signal data for each inlet. This will be 1 for normal Pd signals,
butif nchannels[i]
be prepared to process that many channels worth of sample data
(i.e., the ith table argument of perform will actually con-
tain nchannels[i] % blocksize samples — a block of
blocksize samples for the first channel, followed by another
block of blocksize samples for the second channel, etc.).

For the output signals, you can set up the desired number
of channels per outlet in the dsp method, using the signal__
setmultiout method which is also new in Pd-Lua 0.12.20.
In that case your Lua table with the output samples should con-
tain the blocksize samples for channel 1 followed by the
blocksize samples for channel 2, etc., using the same lay-
out as the tables for multi-channel input signals. We won’t go
into this here any further, but you can find a simple example for
your perusal in the examples/multichannel folder in the Pd-Lua
source.

3. GRAPHICS

Pd-Lua’s new graphics API provides you with a way to equip an
object with a static or animated graphical display inside its object
box on the Pd canvas. Typical examples would be various kinds
of wave displays, or custom GUI objects consisting of text and
simple geometric shapes. To these ends, you can adjust the size
of the object box to any width and height you specify. Inside the
box rectangle you can then draw text and basic geometric shapes
such as lines, rectangles, circles, and arbitrary paths, through
stroke and fill operations using any rgb color.

In order to enable graphics in a Pd-Lua object, you have to
provide a paint method. This receives a graphics context g as
its argument, which lets you set the current color, and draw text

> 1, then your per f orm method should

87

and the various different geometric shapes using that color. In
addition, you can provide methods to be called in response to
mouse down, up, move, and drag actions on the object, which
is useful to equip your custom GUI objects with mouse-based
interaction.

Last but not least, the set_args method lets you store
internal object state in the object’s creation arguments, while
get_args lets you retrieve those arguments. This is useful if
you need to keep track of persistent state when storing an object
on disk (via saving the patch) or when duplicating or copying
objects. Also, their companion canvas_realizedollar
method allows you to expand symbols containing "$" patch ar-
guments like $0, $1, etc. These three are often combined, but
they can also be used separately, and they work just as well with
ordinary Pd-Lua objects which don’t utilize the graphics API.

We use a custom GUI object, a simple kind of dial, as a run-
ning example to illustrate most of these elements in the follow-
ing subsections. To keep things simple, we will not discuss the
graphics API in much detail here, so you may want to check the
graphics subpatch in the main pdlua-help patch, which contains
a detailed listing of all available methods for reference.

3.1. A basic dial object

Let’s begin with a basic clock-like dial: just a circular face and a
border around it, on which we draw a center point and the hand
(a line) starting at the center point and pointing in any direction
which indicates the current phase angle. See Fig. 4.

@

File Edit View Put Media Windows Help

dial.pd - fhome/ag/Desktop/dial/dial1 VoA X

el

Figure 4: Basic dial.

Following the clock paradigm, we assume that a zero phase
angle means pointing upwards (towards the 12 o’clock posi-
tion), while +1 or -1 indicates the 6 o’clock position, pointing
downwards. Phase angles less than -1 or greater than +1 wrap
around. Positive phase differences denote clockwise, negative
differences counter-clockwise rotation. And since we’d like to
change the phase angle displayed on the dial, we add an inlet
taking float values.

Here’s the code implementing the object initialization and
the float inlet:

local dial = pd.class("dial")

function dial:initialize (sel,
self.inlets = 1
self.outlets =
self.phase = 0
self:set_size (127,
return true

end

atoms)
0

127)

function dial:in_1 float (x)
self.phase = x

Proceedings of the 1 9" Linux Audio Conference (LAC-25), Villeurbanne, France, June 26-28, 2025

self:repaint ()
end

The self:set_size () callinthe initialize method
sets the pixel size of the object rectangle on the canvas (in this
case it’s a square with a width and height of 127 pixels). Also
note the call to self:repaint () in the float handler for the
inlet, which will redraw the graphical representation after updat-
ing the phase value.

We mention in passing that self:repaint () always re-
draws everything, in this example the face, border, center point,
and hand, even though only the hand will change with the phase
angle. As of Pd-Lua 0.12.19, it is also possible to partition your
graphics into layers, each with their own paint method, so that
you only need to repaint layers that actually changed, which will
improve rendering performance for complex drawings.

We still have to add the dial:paint () method to do all
the actual drawing:

function dial:paint (qg)
local width, height = self:get_size()
local x, y = self:tip()

—— object border,
g:set_color (0)
g:£fil1l1_all()

fill with bg color

-— dial face

g:fill_ellipse (2,
- 4)

g:set_color (1)

—-— dial border

g:stroke_ellipse (2,
height - 4, 4)

—-— center point

g:fill_ellipse(width/2 - 3.5,
= 3.5, 7, 7)

—-— dial hand

g:draw_line (x,

end

2, width - 4, height

2, width - 4,

height/2

y, width/2, height/2, 2)

The existence of the paint method tells Pd-Lua that this is
a graphical object. As mentioned before, this method receives
a graphics context g as argument. The graphics context is an
internal data structure keeping track of the graphics state of the
object, which is used to invoke all the graphics operations. The
set_color method of the graphics context is used to set the
color for all drawing operations; in the case of £i111 operations
it fills the graphical element with the color, while in the case of
stroke operations it draws its border. There’s just one color
value, so we need to set the desired fill color in case of £111,
and the desired stroke color in case of st roke operations. The
color values 0 and 1 we use in this example are predefined, and
indicate the default background color (usually white) and default
foreground color (usually black), respectively.

It is possible to choose other colors by calling
g:set_color(r, g, b) withrgb color valuesinstead, with
each r, g, b value ranging from 0 to 255 (i.e., a byte value). For
instance, the color "teal" would be specified as 0, 128, 128, the
color "orange" as 255, 165, 0, "black" as 0, 0, 0, "white" as
255, 255, 255, etc. It’s also possible to add a fourth alpha a.k.a.
opacity value a, which is a floating point number in the range
0-1, where 0 means fully transparent, 1 fully opaque, and any
value in between will blend in whatever is behind the graphical
element to varying degrees. As of Pd-Lua 0.12.7, alpha values
are fully supported in both plugdata and Purr Data. In vanilla Pd
they are simply ignored at present, so all graphical objects will
be opaque no matter what alpha value you specify.

Let’s now take a closer look at the drawing operations them-
selves. We start out by filling the entire object rectangle, which
is our drawing surface, with the default background color 0, us-

88

ing g:£i11_all (). This operation is special in that it not
only fills the entire object rectangle, but also creates a standard
border rectangle around it. If you skip this, you’ll get an object
without border, which may be useful at times.

We then go on to fill a circle with the background color,
the dial’s face. The graphics API has no operation to draw a
circle, so we just draw an ellipse instead. The coordinates given
to g:fill _ellipse () are the coordinates of the rectangle
surrounding the ellipse. In this case the width and height values
are what we specified with self:set_size (127, 127) in
the initialize method, so they are identical, and thus our
ellipse is in fact a circle. Also note that we make the ellipse
a little smaller and put it at a small offset from the upper left
corner, so the actual width and height are reduced by 4 and the
shape is centered in the object rectangle (or square, in this case).

Note that we could have skipped drawing the face entirely at
this point, since it just draws a white circle on white background.
But we could make the face a different color later, so it’s good to
include it anyway.

After the face we draw its border, drawing the same ellipse
again, but this time in the default foreground color and with a
stroke width of 4. We then go on to draw the remaining parts,
a small disk in the center which mimics the shaft on which the
single hand of the dial is mounted, and the hand itself, which is
just a simple line pointing in a certain direction.

Which direction? The line representing the hand goes from
the center point width/2, height/2 to the point given by the x, y
coordinates. Both width, height and x, y are calculated and as-
signed to local variables at the beginning of the paint method:

local width, height = self:get_size()
local x, y = self:tip()

The get_size () call employs a built-in method which
returns the current dimensions of the object rectangle; this is
part of the graphics API. We could have used the constant 127
from the initialize method there, but we could change the
size of the object rectangle later, so it’s better not to hard-code
the size in the paint method.

The tip () method we have to define ourselves. It is sup-
posed to calculate the coordinates of the tip of the hand. We have
factored this out into its own routine right away, so that we can
reuse it later when we add the mouse actions. Here it is:

function dial:tip()

local width, height = self:get_size()

local x, y = math.sin(self.phasexmath.
pi), —math.cos(self.phasexmath.pi)
X, vy = (x/2x0.8+0.5) xwidth, (y

/2%0.840.5) rheight
return x, y
end

This just converts the position of the tip from polar coordi-
nates (1, phase) to rectangular coordinates (X, y) and then trans-
lates and scales the normalized coordinates to pixel coordinates
in the object rectangle which has its center at (width/2, height/2).
We also put the tip at a normalized radius of 0.8 so that it is well
within the face of the dial. Moreover, the formula computing the
X, y pair accounts for the fact that the y coordinates of the ob-
ject rectangle are upside-down (0 is at the top), and that we want
the center-up (a.k.a. 12 o’clock) position to correspond to a zero
phase angle. Hence the sin and cos terms have been swapped and
the cos term adorned with a minus sign compared to the standard
polar - rectangular conversion formula.

So now that we hopefully understand all the bits and pieces,
here’s the Lua code of the object in its entirety again:

local dial = pd.class("dial")

function dial:initialize (sel,
self.inlets = 1

atoms)

Proceedings of the 1 9" Linux Audio Conference (LAC-25), Villeurbanne, France, June 26-28, 2025

self.outlets = 0
self.phase = 0
self:set_size (127,
return true

end

127)

function dial:in_1_float (x)
self.phase = x
self:repaint ()

end

—-— calculate the x,

—-— of the hand

function dial:tip()
local width, height =

y position of the tip

self:get_size()

local x, y = math.sin(self.phasexmath.
pi), —math.cos(self.phasexmath.pi)
x, y = (x/2x0.8+0.5)xwidth, (y

/2%x0.8+0.5) xheight
return x, y
end

function dial:paint (qg)
local width, height = self:get_size()
local x, y = self:tip()

—-—- object border,
g:set_color (0)
g:fill_all()

fill with bg color

-— dial face

g:fill_ellipse (2,
- 4)

g:set_color (1)

—-— dial border

g:stroke_ellipse (2,
height - 4, 4)

—-— center point

g:fill_ellipse (width/2 - 3.5,
= 3.5, 7, 7)

—-— dial hand

g:draw_line (x,

end

2, width - 4, height

2, width - 4,

height/2

y, width/2, height/2, 2)

3.2. Adding an outlet

We can already send phase values into our dial object, but there’s
no way to get them out again. So let’s add an outlet which lets
us do that. Now that the grunt work is already done, this is
rather straightforward. First we need to add the outlet in the
initialize method:

self.outlets = 1

And then we just add a message handler for bang which
outputs the value on the outlet:

function dial:in_1_bang()
self:outlet (1, "float",
end

{self.phase})

Fig. 5 shows how our patch looks like now.

3.3. Mouse actions

Our dial now has all the basic ingredients, but it still lacks one
important piece: Interacting with the graphical representation
itself using the mouse. The graphics API makes this reasonably
easy since it provides us with four callback methods that we can
implement. Each of these gets invoked with the current mouse
coordinates relative to the object rectangle:

89

o

File Edit View Put Media Windows Help

dial.pd - /home/ag/Desktop/dial/dial2 v oA X

.21

S

el

Figure 5: Adding an outlet.

* mouse_down (x, vy): called when the mouse is clicked

* mouse_up (x, called when the mouse button is

released

y):

* mouse_move (x, y): called when the mouse changes
position while the mouse button is not pressed

* mouse_drag(x, y): called when the mouse changes
position while the mouse button is pressed

Here we only need the mouse_down and mouse_drag
methods which let us keep track of mouse drags in the object
rectangle in order to update the phase value and recalculate the
tip of the hand. Here’s the Lua code. Note that the mouse_down
callback is used to initialize the tip_x and tip_y member
variables, which we keep track of during the drag operation, so
that we can detect in mouse_drag when it’s time to output the

phase value and repaint the object:

function dial:mouse_down (x,
self.tip_x, self.tip_y =
end

y)
self:tip()

function dial:mouse_drag(x, V)
local width, height = self:get_size()
local x1, yl = x/width-0.5, y/height
-0.5
—— calculate the normalized phase,
—-— shifted by 0.5, since we want zero
—— to be the center up position
local phase = math.atan(yl, x1)/math.pi
+ 0.5
—— renormalize if we get an angle > 1,
—-— to account for the phase shift
if phase > 1 then
phase = phase - 2
end

self.phase = phase

local tip_x, tip_y = self:tip();
if tip_x ~= self.tip_x or tip_y ~= self
.tip_y then
self.tip_x = tip_x
self.tip_y = tip_y
self:in_1_bang()
self:repaint ()
end
end

Proceedings of the 1 9" Linux Audio Conference (LAC-25), Villeurbanne, France, June 26-28, 2025

3.4. More dial action: clocks and speedometers

Now that our dial object is basically finished, let’s do something
interesting with it. The most obvious thing is to just turn it into
a clock (albeit one with just a seconds hand) counting off the
seconds. For that we just need to add a metro object which in-
crements the phase angle and sends the value to the dial each
second. See Fig. 6.

o

File Edit View

dial.pd - /nome/ag/Desktop/dial/dial3 PN
Put Media Windows Help

clock

O e.233

metro 1000
expr phase + 1/60.

0.233

5 phase

Figure 6: A clock.

Pd lets us store the phase angle in a named variable (the v
phase object) which can be recalled in an expr object doing
the necessary calculations. The expr object sends the computed
value to the phase receiver, which updates both the variable
and the upper numbox, and the numbox then updates the dial.
Note that we also set the variable whenever the dial outputs a
new value, so you can also drag around the hand to determine
the starting phase. And we added a 0 message to reset the hand
to the 12 o’clock home position when needed.

Fig. 7 shows another little example, rather useless but fun,
simulating a speedometer which just randomly moves the needle
left and right.

Vs

File Edit Wiew Put Media Windows Help

dial.pd - fhome/ag/Desktop/dial/dial4 v oA X

random speedometer
O e.123
metro 160
expr random(-108, 108)/300.
0.23

$1 160

line

1< st
=l

s phase

Figure 7: A speedometer.

We’re sure that you can imagine many more creative uses
for this simple but surprisingly versatile little GUI object, which
we did in just a few lines of fairly simple Lua code. An extended
version of this object, which covers some more features of the
graphics API that we didn’t discuss here to keep things simple,
can be found as dial.pd and dial.pd_lua in the pd-lua tutorial
examples.

90

4. REAL-WORLD EXAMPLES
To complement the previous examples, let’s examine two more

complex applications that demonstrate what’s possible with Pd-
Lua’s graphics capabilities in real-world scenarios.

4.1. Multi-channel signal inspector

1px = 1.005p 100 -a.09)

Figure 8: Screenshot of the [show~] object in Pure Data, show-
ing a 31-channel signal of a spherical speaker array on a trun-
cated icosahedron. The visualization reveals the delays applied
for beam forming and vector based amplitude panning.

The [show~] object combines a multi-channel waveform view
with a panel on the right displaying RMS levels and average val-
ues of each channel [17]. The object implements several inter-
active features:

* Mouse-based zooming through dragging to inspect sig-
nals in detail or on a larger scale
* Channel highlighting on hover to focus on specific signals
This combination of multi-channel signal processing and in-
teractive graphics makes it a simple, but valuable tool for analy-
sis and debugging.

4.2. DualSense controller visualization

Figure 9: Screenshot of the [dsshow] object in Pure Data, dis-
playing the controller state through input from a HID-based ex-
ternal.

This graphical object provides an intuitive way to moni-
tor and demonstrate controller interaction in Pure Data, creating
a detailed visual representation of a DualSense controller that
shows real-time state of buttons, analog sticks, touchpad, and
gyro data [16].

The implementation demonstrates how Pd-Lua’s graphics
API can handle complex, responsive GUI elements. With the
upcoming SVG support (see Section 5), it will be possible to
create this kind of visualization in a much more efficient way.

Proceedings of the 1 9" Linux Audio Conference (LAC-25), Villeurbanne, France, June 26-28, 2025

5. FURTHER DEVELOPMENT

While the current graphics API is highly versatile, certain fea-
tures could not be implemented due to inherent limitations in
vanilla Pd's graphics engine. These limitations include the abil-
ity to fill gradients, have rotation transforms, or have paths inter-
sections handled with a specific fill rule (even-odd or nonzero).
To address these limitations and make Pd-Lua truly a com-
plete vector graphics renderer, a new function "draw_svg" is
being added to the graphics APIL. This provides near-complete
support for the Scalable Vector Graphics format, enabling afore-
mentioned features such as gradients, path intersections and ro-

tation transforms using Mikko Mononen’s NanoSVG library [12].

The restrictions of vanilla Pd’s rendering engine are overcome by
rasterizing the SVG into an image. The API usage is as follows:

function example:paint (g)
local svg = [[
<svg width="24" height="24" fill="
none" viewBox="0 0 24 24"><path
d="M8 12a4 4 0 1 1 804400
1-8 0z" fill="4#212121"/></svg>
11]
local x = 10, y =
g:draw_svg (svg, X,
end

10
v)

More ongoing work includes expanding the mouse interac-
tion API with mouse_enter (x, y) andmouse_exit (x,
y) callbacks to track whether the mouse is currently over the
object. Additionally, an option to choose text justification when
rendering text is also in development.

6. CONCLUSION

Pd externals are usually programmed using C, the same pro-
gramming language that Pd itself is written in. But novices
may find C difficult to learn, and the arcana of Pd’s C interface
may also be hard to master. Programming your externals in Lua
makes this much easier and opens up many possibilities.

To help with that, the new capabilities of Pd-Lua 0.12 de-
scribed in this paper vastly extend the scope of Pd-Lua appli-
cations, as you can now program pretty much any kind of Pd
object in Lua, covering both signal and control processing, as
well as custom GUI objects. Thus, next time you run into a Pd
programming problem which cannot be solved easily with a Pd
abstraction or an existing external, you may want to consider
using Pd-Lua to implement the functionality that you need.

There are some alternatives to pd-lua worth considering if
you’d like to program Pd objects with signal processing and/or
graphics functionality. py4pd is a relatively new project which
is based on the Python scripting language and offers some fa-
cilities to draw scores and perform sound analysis [13]. If your
main focus is on audio signal processing, then you should look
at Grame’s Faust programming language [1]. This is a high-level
functional programming language specifically tailored to sound
processing which compiles to efficient native code. Employing
Faust’s just-in-time compiler back-end based on the LLVM com-
piler framework, there’s support for running Faust programs in
both Max and Pd [2, 9, 10].

7. ACKNOWLEGEMENTS

The authors would like to thank the anonymous reviewers for
their suggestions.

8. REFERENCES

[1] Faust Programming Language. https://faust.grame.fr/.

91

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

faustgen. https://github.com/grame-cncm/faust/tree/
master-dev/embedded/faustgen.

pd-lua. https://agraef.github.io/pd-lua/.

Pd Manual - Chapter 2: Theory of operation.
https://msp.ucsd.edu/Pd_documentation/resources/
chapter2.htm#s2.5.6.

purr-data. https://agraef.github.io/purr-data/.

pure-data/deken, Feb. 2025. https://github.com/pure-data/
deken.

A. Grif. pdx.lua - advanced live-coding support. https://
agraef.github.io/pd-lua/tutorial/pd-lua-intro.html#pdxlua.

A. Griaf. A Quick Introduction to Pd-Lua. https://agraef.
github.io/pd-lua/tutorial/pd-lua-intro.html.

A. Grif. pd-faustgen2, Apr. 2025. https://github.com/
agraef/pd-faustgen.

P. Guillot. pd-faustgen: The FAUST compiler embedded
in a Pd external. https://github.com/CICM/pd-faustgen.

R. Ierusalimschy, L. H. d. Figueiredo, and W. Celes. The
Implementation of Lua 5.0. JUCS - Journal of Universal
Computer Science, 11(7):1159-1176, July 2005.

M. Mononen. memononen/nanosvg, Mar. 2025. https://
github.com/memononen/nanosvg.

C. K. Neimog. py4pd: Bringing Python to PureData, May
2025. https://github.com/charlesneimog/py4pd.

M. Puckette. Software by Miller Puckette. https://msp.
ucsd.edu/software.html.

T. Schoen. plugdata: A visual programming environ-
ment for audio experimentation, prototyping and educa-
tion. https://plugdata.org/.

B. Wesch. ben-wes/pd-dualsense, Mar. 2025.
github.com/ben-wes/pd-dualsense.

B. Wesch. ben-wes/pdlua-show_tilde, Mar. 2025. https:
//github.com/ben-wes/pdlua-show_tilde.

https://

